OCR Maths FP1

Topic Questions from Papers

Roots of Polynomial Equations

[2]

PMT

1 (a)	The quadratic ed	auation x^2 -	-2x + 4 =	0 has	roots	α and	В.
-----	----	------------------	-----------------	-----------	-------	-------	--------------	----

(i) Write down the values of
$$\alpha + \beta$$
 and $\alpha\beta$.

(ii) Show that
$$\alpha^2 + \beta^2 = -4$$
. [2]

(iii) Hence find a quadratic equation which has roots
$$\alpha^2$$
 and β^2 . [3]

(b) The cubic equation $x^3 - 12x^2 + ax - 48 = 0$ has roots p, 2p and 3p.

(i) Find the value of
$$p$$
. [2]

(ii) Hence find the value of
$$a$$
. [2]

(Q8, June 2005)

2 Use the substitution x = u + 2 to find the exact value of the real root of the equation

$$x^3 - 6x^2 + 12x - 13 = 0.$$
 [5]

(Q4, Jan 2006)

3 The roots of the equation

$$x^3 - 9x^2 + 27x - 29 = 0$$

are denoted by α , β and γ , where α is real and β and γ are complex.

(i) Write down the value of
$$\alpha + \beta + \gamma$$
. [1]

(ii) It is given that
$$\beta = p + iq$$
, where $q > 0$. Find the value of p , in terms of α . [4]

(iii) Write down the value of
$$\alpha\beta\gamma$$
. [1]

(iv) Find the value of
$$q$$
, in terms of α only. [5]

(Q10, Jan 2006)

One root of the quadratic equation $x^2 + px + q = 0$, where p and q are real, is the complex number 2-3i.

(ii) Find the values of
$$p$$
 and q . [4]

(Q3, June 2006)

5 The cubic equation $x^3 - 2x^2 + 3x + 4 = 0$ has roots α , β and γ .

(i) Write down the values of
$$\alpha + \beta + \gamma$$
, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$. [3]

The cubic equation $x^3 + px^2 + 10x + q = 0$, where p and q are constants, has roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$.

(ii) Find the value of
$$p$$
. [3]

(iii) Find the value of
$$q$$
. [5]

(Q10, June 2006)

[2]

6 The quadratic equation $x^2 + 5x + 10 = 0$ has roots α and β .

PMT

PMT

PMT

- (i) Write down the values of $\alpha + \beta$ and $\alpha\beta$.
- (ii) Show that $\alpha^2 + \beta^2 = 5$. [2]
- (iii) Hence find a quadratic equation which has roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$. [4] (Q7, Jan 2007)
- 7 The cubic equation $3x^3 9x^2 + 6x + 2 = 0$ has roots α , β and γ .
 - (i) (a) Write down the values of $\alpha + \beta + \gamma$ and $\alpha\beta + \beta\gamma + \gamma\alpha$. [2]
 - **(b)** Find the value of $\alpha^2 + \beta^2 + \gamma^2$. [2]
 - (ii) (a) Use the substitution $x = \frac{1}{u}$ to find a cubic equation in u with integer coefficients. [2]
 - (b) Use your answer to part (ii) (a) to find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$. [2] (Q6, June 2007)
- **8** The cubic equation $2x^3 3x^2 + 24x + 7 = 0$ has roots α , β and γ .
 - (i) Use the substitution $x = \frac{1}{u}$ to find a cubic equation in u with integer coefficients. [2]
 - (ii) Hence, or otherwise, find the value of $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$. [2] (Q3, Jan 2008)
- 9 (i) Show that $\alpha^3 + \beta^3 = (\alpha + \beta)^3 3\alpha\beta(\alpha + \beta)$. [2]
 - (ii) The quadratic equation $x^2 5x + 7 = 0$ has roots α and β . Find a quadratic equation with roots α^3 and β^3 . [6] (Q9, Jan 2008)
- The cubic equation $x^3 + ax^2 + bx + c = 0$, where a, b and c are real, has roots (3 + i) and 2.
 - (i) Write down the other root of the equation. [1]
 - (ii) Find the values of a, b and c. [6] (Q6, June 2008)
- The quadratic equation $x^2 + kx + 2k = 0$, where k is a non-zero constant, has roots α and β . Find a quadratic equation with roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$. [7]

 (Q8, June 2008)

PMT

12

(i) Show that
$$(\alpha - \beta)^2 \equiv (\alpha + \beta)^2 - 4\alpha\beta$$
.

[2]

The quadratic equation $x^2 - 6kx + k^2 = 0$, where k is a positive constant, has roots α and β , with $\alpha > \beta$.

(ii) Show that
$$\alpha - \beta = 4\sqrt{2}k$$
.

[4]

(iii) Hence find a quadratic equation with roots $\alpha + 1$ and $\beta - 1$.

[4]

(Q8, Jan 2009)

The roots of the quadratic equation $x^2 + x - 8 = 0$ are p and q. Find the value of $p + q + \frac{1}{p} + \frac{1}{q}$. 13 (Q4, June 2009)

PMT

PMT

- The cubic equation $x^3 + 5x^2 + 7 = 0$ has roots α , β and γ . 14
 - (i) Use the substitution $x = \sqrt{u}$ to find a cubic equation in u with integer coefficients. [3]
 - (ii) Hence find the value of $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$.

[2]

(Q5, June 2009)

- The cubic equation $2x^3 + 3x 3 = 0$ has roots α , β and γ . 15
 - (i) Use the substitution x = u 1 to find a cubic equation in u with integer coefficients. [3]
 - (ii) Hence find the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)$.

[2]

(Q2, Jan 2010)

- One root of the cubic equation $x^3 + px^2 + 6x + q = 0$, where p and q are real, is the complex number 16 5 - i.
 - (i) Find the real root of the cubic equation.

[3]

(ii) Find the values of p and q.

[4]

(Q6, Jan 2010)

The quadratic equation $x^2 + 2kx + k = 0$, where k is a non-zero constant, has roots α and β . Find a 17 quadratic equation with roots $\frac{\alpha + \beta}{\alpha}$ and $\frac{\alpha + \beta}{\beta}$. [7]

(Q7, June 2010)

- The quadratic equation $2x^2 x + 3 = 0$ has roots α and β , and the quadratic equation $x^2 px + q = 0$ 18 has roots $\alpha + \frac{1}{\alpha}$ and $\beta + \frac{1}{\beta}$.
 - (i) Show that $p = \frac{5}{6}$.

(ii) Find the value of q.

[5]

[4]

(Q8, Jan 2011)

- One root of the quadratic equation $x^2 + ax + b = 0$, where a and b are real, is 16 30i.
 - (i) Write down the other root of the quadratic equation.

[1] [4]

(ii) Find the values of a and b.

(Q9, June 2011)

The cubic equation $x^3 + 3x^2 + 2 = 0$ has roots α , β and γ .

(i) Use the substitution
$$x = \frac{1}{\sqrt{u}}$$
 to show that $4u^3 + 12u^2 + 9u - 1 = 0$. [5]

(ii) Hence find the values of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$ and $\frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \gamma^2} + \frac{1}{\gamma^2 \alpha^2}$. [5]

21 The cubic equation $3x^3 - 9x^2 + 6x + 2 = 0$ has roots α , β and γ .

PMT

(i) Write down the values of
$$\alpha + \beta + \gamma$$
, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$. [3]

The cubic equation $x^3 + ax^2 + bx + c = 0$ has roots α^2 , β^2 and γ^2 .

(ii) Show that $c = -\frac{4}{9}$ and find the values of a and b. [9] (Q10, Jan 2012)

One root of the quadratic equation $\Re^2 + ax + b = 0$, where a and b are real, is the complex number 4 - 3i. Find the values of a and b. [4]

23 The quadratic equation $2x^2 + x + 5 = 0$ has roots α and β .

- (i) Use the substitution $x = \frac{1}{u+1}$ to obtain a quadratic equation in u with integer coefficients. [3]
- (ii) Hence, or otherwise, find the value of $(\frac{1}{\alpha} 1)(\frac{1}{\beta} 1)$. [3] (Q6, June 2012)

The quadratic equation $x^2 + x + k = 0$ has roots α and β .

(i) Use the substitution
$$x = 2u + 1$$
 to obtain a quadratic equation in u . [2]

(ii) Hence, or otherwise, find the value of
$$\left(\frac{\alpha-1}{2}\right)\left(\frac{\beta-1}{2}\right)$$
 in terms of k . [2] (Q4, Jan 2013)

25 (i) Show that
$$(\alpha\beta + \beta\gamma + \gamma\alpha)^2 \equiv \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 + 2\alpha\beta\gamma(\alpha + \beta + \gamma)$$
. [3]

(ii) It is given that α , β and γ are the roots of the cubic equation $x^3 + px^2 - 4x + 3 = 0$,

where
$$p$$
 is a constant. Find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$ in terms of p . [5] (Q9, Jan 2013)

u

The cubic equation $kx^3 + 6x^2 + x - 3 = 0$, where k is a non-zero constant, has roots α , β and γ .

Find the value of
$$(\alpha + 1)(\beta + 1) + (\beta + 1)(\gamma + 1) + (\gamma + 1)(\alpha + 1)$$
 in terms of k . [6] (Q8, June 2013)

1 1 3

 \sum

